Illicit Discharge Detection and Elimination:

Finding and Identifying Illicit Discharges

Field work begins...

Areas to prioritize for field work

- Past DischargeComplaints
- Poor Dry Weather Water Quality
- Density of Generating Sites
- Density of Industrial NPDES Permits
- Stormwater Outfall Density

- Age of Subwatershed Development
- Former CombinedSewers
- Older Industrial Operations
- Aging or Failing Sewers
- Density of Older Septic Systems
- Past Sewer Conversions

Select the factors that apply most to your community

Field Maps

Field Supply List

- GPS unit
- Camera
- Measuring tape
- Stopwatch
- Ping pong ball
- Graduated container
- Safety gloves
- Sample bottles (clean/sterile)
- Cooler / ice packs
- First Aid kit
- Pencils / sharpies

- Outfall marker
- Calculator
- Flashlight
- Dipper
- Waders

Safety Guidance

Field safety

- Wear waders, with good grip
- Wear rubber gloves when collecting samples
- Hand sanitizer is your best friend
- If working in manholes, wear steel toed boots and use a pick (not your fingers)
- Wear goggles when using hazardous reagents

Lab safety

- Wear latex gloves when processing samples
- Dispose of materials properly, according to MSDS sheets
- Bacteria plates can be soaked in bleach after counting
- Use a hood, if / when necessary
- Wear goggles when using hazardous reagents

Field Assessments The Basics

- Time of year considerations
- Supplies
- Staffing requirements
- Safety considerations

Outfall Reconnaissance Inventory (ORI) Map, Mark & Photograph Outfalls

- Assign unique ID to each outfall
- Physically mark each outfall
- Use a GPS unit to record outfall locations
- Take a photograph

Outfall Reconnaissance Inventory (ORI) Record Basic Characteristics

- Dimensions
- Material
- Whether or not outfall is flowing

Outfall Reconnaissance Inventory (ORI) Simple Monitoring at Flowing Outfalls

▶ Flow

▶ pH

Temperature

Ammonia

Outfall Reconnaissance Inventory (ORI) Physical Indicators for Flowing Outfalls

- Odor
- Color
- Turbidity
- Floatables

Source: Fort Worth DEM

Outfall Reconnaissance Inventory (ORI) What to do when obvious illicit discharge encountered?

- STOP the ORI
- Track the source
- Contact appropriate water pollution agency
- Photo document, estimate flow, and collect a sample – if safe

Outfall Reconnaissance Inventory (ORI)
Physical indicators at flowing and non-

flowing outfalls

Outfall Damage

Deposits/Stains

Abnormal Vegetation

Poor Pool Quality

Pipe Benthic Growth

Quick and Dirty ORI Exercise

(Pardon the pun!)

Center for Watershed Protection

The ORI Cannot:

- Find all discharges (can sometimes lead to a "false positive" as well)
- Detect intermittent flows that leave no trace
- Quantify impacts definitively (no direct measure of relative problem)
- Define sources (except for some obvious indicators)

Indicator Monitoring

- More detailed sampling to:
 - ID problem outfalls not apparent from physical indicators alone
 - Test suspect or problem outfalls to confirm if illicit discharge
 - Determine flow type
 - Analyze intermittent discharges

Indicators to Identify Sources of Contamination

Ideal indicator to identify major flow sources has the following characteristics:

- Significant difference in concentrations between possible pollutant sources;
- Small variations in concentrations within each likely pollutant source category;
- Conservative behavior (i.e., no significant concentration change due to physical, chemical or biological processes);
- Ease of measurement with adequate detection limits, good sensitivity and repeatability.

Key Lab Considerations

Equipment cost

Staff training

Number of samples

Safety

Disposal

Simple and Inexpensive Analytical Methods (can be used in the field, but usually much easier, safer, and more efficient in lab)

- Comparative colorimetric methods (apparent color, detergents after extraction)
- Simple probes (pH, conductivity, ion selective potassium)
- Spectrophotometric (fluoride, ammonia, boron)

Center for Watershed Protection

Bacteria Monitoring

Quantitray Under UV Light

3M Petrifilm Plates

Techniques to Interpret Indicator Data

- Single Parameter Screening
- Flow Chart Method
- Industrial Flow Benchmarks
- Chemical Mass Balance Model

Single Parameter Screening (not necessarily recommended)

- Detergents
 - Best single parameter to detect illicit discharges
 - Analysis conducted in controlled lab setting
- Ammonia
 - Concentrations >1mg/L is positive indicator of sewage
 - Analysis in field using portable spectrophotometer

IDDE Flow Chart (Brown et al, 2004)

Chemical Fingerprint Library

- Shallow Groundwater
- Spring Water
- Tap water
- Irrigation
- Sewage
- Septic Tank Discharge
- Common Industrial Discharges
- Commercial Car Wash
- Commercial Laundry

Preliminary Tuscaloosa, AL, "Library" File Data

Mean/(COV)	Fluoride	Detergents	Ammonia	Potassium
	(mg/L)	(mg/L MBAS)	(mg/L, as N)	(mg/L)
Tap water	0.95 (0.03)	0 (0)	0 (0)	1 (0)
Spring water	0.024	0	0.034	3.4
	(1.3)	(0)	(0.82)	(0.79)
Car wash water	0.02	80	0.55	6
	(1.4)	(1.2)	(0.27)	(0.94)
House laundry water	1.1 (0.18)	960 (0.06)	1.0 (0.15)	2 (0)
Sewage	0.68	11	22	12
	(0.07)	(0.12)	(0.71)	(0.19)
Industrial wastewater	0.21	6.0	5.3	49
	(1.7)	(0.68)	(0.73)	(0.52)

Benchmark Concentrations to Identify Industrial Discharges

Benchmark	Concentration	Notes	
Ammonia (mg/L)	<u>≥</u> 50	 Existing "Flow Chart" Parameter Concentrations higher than the benchmark can identify a few industrial discharges 	
Potassium (mg/L)	≥ 20	 Existing "Flow Chart" Parameter Excellent indicator of a broad range of industrial discharges 	
Color (Units)	≥ 500	 Supplemental parameter that identifies a few specific industrial discharges 	
Conductivity (µS/cm)	≥ 2,000	 Identifies a few industrial discharges May be useful to distinguish between industrial sources 	
Hardness (mg/L as CaCO ₃)	≤10 ≥ 2,000	 Identifies a few industrial discharges May be useful to distinguish between industrial sources 	
pH (Units)	<u><</u> 5	 Only captures a few industrial discharges High pH values may also indicate an industrial discharge but residential wash waters can have a high pH as well 	
Turbidity (NTU)	<u>></u> 1,000	 Supplemental parameter that identifies a few specific industrial discharges 	

Take Home Points

- Take some time for the desktop work before heading out into the field
- For single parameter screening, use detergents or ammonia
- Detergents, fluoride, ammonia, and potassium recommended as most useful for identifying contamination of storm drainage systems, as well as tests for *E. coli* or Enterococci
- Begin to document and understand the chemical signatures in Lake County, IL

Q/A

Small Group Exercise

